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ABSTRACT 

The simulation of continuous-time algebraic Riccati equations (CARE) derived from the very large power 

system models is a highly laborious task and most cases infeasible due to the sophisticated structural 

ingredients. The computation is very time costly and the rate of convergence can be severely affected in the 

direct solvers. To overcome those adversities, an iterative approach Rational Krylov Subspace Method (RKSM) 

is introduced to deal with those large-scale CAREs. The solutions of those CAREs and hence the optimal 

feedback matrices can be efficiently explored by the RKSM approach to stabilize the power system models of 

unstable category. In this approach, shift parameters play a vital role in the convergence of the computations 

and size of the solution spaces. The goal of the work is to investigate the effect of different types of shift 

parameters on the stabilization process. To attain the mentioned objective, a modified version of the iterative 

RKSM algorithm is proposed by employing two types of shift parameters, namely, the adaptive ADI shifts and 

heuristic shifts. Qualitative discussions for the outcomes for those shift parameters are narrated by tabular and 

figurative methods.  
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1. INTRODUCTION: 

The first-order index-1 descriptor system consisting of 

sparse sub-matrices is formed in a system of matrix 

equation having input-output relations 
 

 

   ̇ ( )               ( ), 

               ( ),                                       (1)                   

 ( )              ( ),  

 (  )            .  

In the system (1),           is the differential 

coefficient matrix and          ,          , 

         ,          are the state sub- 

matrices, respectively, whereas         ,    

      are the control multiplier sub-matrices, 

        ,          are the state multiplier 

sub-matrices, and        is the direct gain for 

        with      .  In the power system 

models, the matrix   is zero or absent.  Also, 

  ( )     ,   ( )     are the state vectors, 

 ( )     is the control (input), and  ( )     is the 
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output. The mentioned sub-matrices    and    are 

invertible (Hossain and Uddin, 2019). 
 

Over the years, computational techniques are modified 

for the feasibility of massive systems. But compu-

tational intricacy and memory extravagant simulation 

tolls keep the approaches impractical. Thus, large 

dimensional empirical systems are needed to be 

reduced to smaller dimensional systems. The strategy 

of finding a reduced-order model (ROM) of a given 

system is called model order reduction (MOR), 

currently earning vital attention to the researchers. 

ROM-based techniques are extensively adopted in the 

technological fields of the modern scientific world 

(Flagg et al., 2010). An adjustable ROM size and 

keeping the structural design invariant of the test 

system is the earnest sought (Rahman et al., 2020). 

The mechanism of the MOR techniques needs to 

essentially robust maintaining minimized norm of the 

error.  
 

To duly synchronize the iterative steps of the 

manipulation, the index-1 descriptor system (1) is to 

be restructured by implementing the well-known 

Schur-complements as 
 

     ,  

    , 

         
    , 

         
    ,                                                   (2) 

         
    , 

        
    . 

 

Then, the index-1 descriptor system (1) can be 

converted to an equivalent generalized LTI con-

tinuous-time system as 
 

  ̇( )    ( )    ( )  

 ( )    ( )    ( )                                           (3) 

The essence of LTI continuous-time systems is 

undeniable in the phenomena of the real-world engi-

neering models, such as mechatronics, aero-nautics, 

and system and control theory (Rahman et al., 2021). 

In the analysis of system stability and its appliances, 

the Continuous-time Algebraic Riccati Equation 

(CARE) is the pivot factor (Bänsch et al., 2015). The 

CARE explored from (3) can be written as 
 

 

                        .           (4) 

A finite solution   of the CARE (4) is obtainable if no 

eigenvalue of the corresponding Hamiltonian matrix is 

purely imaginary (Abou-Kandil et al., 2012). The 

symmetric positive-definite solution  is called 

stabilizing for the stable closed-loop matrix 

       . 
 

Riccati-based feedback stabilization is obligate 

for an unstable type of system (3), and the opti-

mal feedback matrix         is the premier 

ingredient in this process (Chen and Qui, 2015). 

To stabilize the target system optimally, the 

matrix is to be replaced by        . Then, 

the stabilized system can be formed as 
 

  ̇( )     ( )    ( )  

 ( )    ( )    ( )                                       (5) 

Computationally proficient solvers or analytical tools 

for large-scale CARE arising from the index-1 

descriptors systems are still not technically cheap. 

Some Kleinman-Newton methods exist, which are 

very complicated, time laborious, and predefined 

structures are required (Mena and Saak, 2008). 

Alternating direction implicit (ADI) based approaches 

is computationally extravagant for the prerequisite 

large solution space, preconditioned initial parameters, 

and time-costly matrix factorization (Hasan and 

Uddin, 2018).  

The linearization ability and enforcement of initial 

priories boost up the convergence rate of the 

simulations by the projection-based approach RKSM, 

which is efficiently applicable in systems with 

perturbations (Simoncini et al., 2013). We are 

extending the techniques of the RKSM approach for 

the standard systems that is discussed in (Simoncini, 

2016). The extension is including the modification of 

the existing work in such a way that it can apply for 

index-1 descriptor systems. We will investigate the 

effect of the shift parameters in the RKSM algorithm 

and compare this for the adaptive ADI shifts and 

heuristic shifts, respectively. 

Also, to optimally stabilize the unstable index-1 

descriptor system, we will apply the Riccati-based 
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feedback matrix and analyze the stabilized system 

through eigenspace and transient behaviors. 

2. Rational Krylov subspace method for solving 

index-1 descriptor systems 
 

If the eigenvalues of the matrix pair (   ) 

satisfy      ̅     for the all             that 

ensures the solution   of the CARE (4) exists and 

unique. For a given set of competent shift para-

meters                    , the requisite    

dimensional rational Krylov subspace can be 

generated to pursue the orthogonal projector   

    . The desired rational Krylov subspace can 

be constructed as 
 

 

       (
   (      

 )     

   ∏ (      
 )     

   

). 

 

Again, consider the CARE (4) and apply the 

Galerkin condition to it. After the simplification 

by matrix algebra, a low-rank CARE can be 

achieved as 
 

 ̂  ̂ ̂   ̂  ̂ ̂   ̂  ̂ ̂ ̂  ̂ ̂   ̂  ̂   ,           (6) 
 

Here,  ̂      ,  ̂      ,  ̂      ,  ̂     , 

and  ̂    .  
 

The equation (6) is a low-rank CARE and can be 

solved by MATLAB care command or any existing 

methods, such as the Schur-decomposition method.  
 

For the quick and smooth convergence of the proposed 

approach, adjustable shift selection is crucial (Druskin 

et al., 2010). There are many schemes to find suitable 

shift parameters, several approaches are given in 

(Moret and Popolizio, 2014; Benner et al., 2010) and 

references therein. In the present work, we are 

adopting the adaptive ADI shift and the heuristic shift 

parameters approach for index-1 descriptor systems. 

In the iterative simulation process, to generate 

the feasible orthogonal projector    the existing 

set of shift parameters must be extended within 

the solution space. By the solution  ̂ of the low-

rank CARE (6), the solution   of the CARE (4) 

will be approximated as     ̂  . 
 

To have a stopping condition, a suitable approx-

imation of the residual is required. The residual 

of   th iteration can be executed in terms of 

the Frobenius norm ‖ ‖  as 
 

‖ ‖  ‖    ‖        [
   
   
   

].                     (7)     

Here the block upper triangular matrix   is 

found from the QR- factorization of the matrix   

is defined as 
 

               
    ̂  

          
     (   

    
 )       .                                                      (8) 

 

The factor       needs to be computed from 

the QR-factorization        . Then, the rela-

tive residual can be estimated as 
 

‖ ‖ 
(        )

 
‖ ‖ 

‖  
   ‖

 

 . 

The discussion about the terms and notations of the 

equation (8) are given in (Uddin, 2020) and the 

references therein.  
 

3. Sparsity preservation techniques 

In system (3), the matrix    is dense and for this 

reason, the rate of convergence of their structured 

system will be disturbed and accuracy will be 

affected. To avoid those inconveniences, instead 

of  the explicit conversion of   , a more con-

venient approach will be done. To find   , at each 

of the iterations, a simple linear system will be 

solved as 
 

 

(      
 )       , 

 

[
  

      
   

 

  
   

 ] [
  

 
]  [

    

 
].                                   (9) 

Here   is the truncated term. Due to sparse system 

structure, the higher dimensional linear system (9) is 

conveniently solvable by the conventional direct 

solvers (Uddin, 2020). For the improvement of the 

consistency of the RKSM approach, explicit forms of 

the reduced-order matrices will not be used to 

construct the reduced-order system. The reduced-order 

matrices in sparse form can be attained in the 

following way 
 

 ̂       , 

 ̂        (    )  
  (   ), 
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 ̂       (    )  
    ,                                (10) 

 ̂          
  (   ). 

 

The low-rank solution  ̂  is symmetric and 

positive-definite and can be factorized as  ̂  

   .  Consider the desired low-rank factored 

solution of the CARE (4) as      . Thus, the 

solution   of the (4) can be attained as       such 

that     ̂   (  )(  )     . 
 

For the future steps, the factored solution      

will be stored and hence the optimal feedback 

matrix            (   ) can be estimated. 

This process is iterative and will continue until 

the desired convergence is achieved. The whole 

process is summarized in Algorithm-1. 

 

Finally, applying          , the optimally 

stabilized LTI continuous-time system can be 

written as (5). To preserve the structure of the 

system, it needs to back to the original structure 

(1), and for this, the target system needs to be 

re-written as 
 

 

   ̇ ( )  (      
 )           ( ),    

  (      
 )           ( ),                (11) 

 ( )              ( ).

 

Algorithm 1: Updated RKSM 

 Input:                           ,      and    (initial shifts). 

 Output:   such that       and   .  

1 Compute      (       
    )  (QR-factorization). 

2 Choose       and      . 

3 While not converged or        do 

4 Solve linear system (9) for     . 

5 Compute desired shifts for the next iterations. 

6 Orthogonalize      against    to obtain  ̂   , such that           ̂    . 

7 Assuming  ̂,  ̂,  ̂ and  ̂ are defined in (10), for  ̂ solve the reduced-order CARE (6). 

8 Update   ( ̂  ̂)      . 

9 Compute‖ ‖ 
(        )

 for convergence. 

10 end while  
 

11 Compute eigenvalue decomposition  ̂             [
   
   

] [
  

 

  
 ]. 

 

12 For negligible eigenvalues truncate    and construct           

 

 . 

13 Compute    (       
    ) (   )  . 

 
 

 

4. Numerical results 

The eligibility and efficiency of the proposed tech-

niques for desired shift parameters are investigated by 

subjecting a Brazilian Interconnected Power System 

(BIPS) model, namely BIPS-606 with 606 differential 

and 6529 algebraic variables, which is of the type 

unstable index-1 descriptor system (Rommes et al., 

2019; Freitas et al., 2008). The proposed tech-

niques are applied with a tolerance level       to 

find low-rank approximate solutions for both 

adaptive ADI and heuristic shifts. 
 

To stabilize the target model the optimal feedback 

matrix   is used. The comparisons of several com-

putational aspects are given in Table 1. 

 

Table 1: Comparative analysis 

Shifts Tolerance No of iteration Space dimension Numerical rank CPU time (second) 

Adaptive ADI 
 

      
98 392 197 181 

Heuristic 115 460 195 136 
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From the above table, it is observed that by using 

adaptive ADI shifts a smaller solution space can be 

achieved, which is feasible for the memory allocation 

of the computational tool. In contrast, heuristic shifts 

are better for minimizing computational time.  

 

The comparison of the relative residuals and the 

eigenvalue stabilization for the RKSM approach 

exerting the adaptive ADI and heuristic shifts are 

shown in Fig 1 and Fig 2. 

 

 

 

 

 

 

 

Fig 1: Comparison of the relative residuals. 

 

 

 

 

 

 

 

Fig 2: Comparison of the stabilization of the 

eigenvalues. 

From the above figures, it is evident that that adaptive 

ADI shifts provide better relative residuals than 

heuristic shifts. But the stabilized eigenvalues for both 

of the shifts are very identical.  

The sub-figures of Fig 3 depict the stabilization 

of the step-responses of dominant input-output 

relations of the target model. 

 

 

 

 

 

 

 

a) 1st input/3rd output 

 

 

 

 

 

 

 

 
 

 

b) 2nd input/1st output 

 

 

 

 

 

 

 

c) 3rd input/2nd output 

 

 

 

 

 

 

(d) 4th input/3rd output 

Fig 3: Comparison of the step-responses of the ROMs. 
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From the above sub-figures, it can be said that by 

utilizing both of the adaptive and heuristic shifts the 

unstable index-1 descriptor systems can be efficiently 

stabilized. 

5. CONCLUSION: 

In this work, the techniques to optimally stabilize the 

unstable index-1 descriptor system by the optimal 

feedback matrix attained by the solution of the Riccati 

equation, are introduced and embedded. To serve the 

purpose, the CARE corresponding to a model derived 

from the Brazilian Interconnected Power System has 

been efficiently solved by the iterative RKSM 

approach utilizing adaptive ADI shift and heuristic 

shift parameters. The robustness and time-dealing 

efficiency of the computation is justified by applying 

the techniques to the target model. From the tabular 

and graphical comparisons, it can be concluded that 

the RKSM approach utilized both the adaptive ADI 

and heuristic shifts, stabilized the target model with the 

desired efficiency. But adaptive ADI shifts are feasible 

for the number of iterations and space dimensions, 

whereas heuristic shifts are suitable for the numerical 

rank and computation time.  
 

Thus, adaptive ADI shifts are applicable for the 

feasibility of memory allocation and heuristic shifts are 

comfortable for quick convergence. 
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