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ABSTRACT  

We investigate the core features of the perturbation method with the help of some simple but 

sophisticated problems and demonstrate how much accurately it predicts the solutions of the 

problems. To fulfill the target, we use the method for getting the solution of differential 

equations with initial and boundary conditions. Then the results obtained are compared with the 

series solution and the exact/numerical solution by using Mathematica and Fortran Programming. 

The comparisons are shown graphically. Also, the perturbation series approximation and the 

exact or numerical solution are in good agreement. Our investigation shows that a certain number 

of terms of the perturbation series give an excellent approximation than the same number of 

terms of the numerical solution. 
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INTRODUCTION: 

Perturbation theory developed by Taiwo and Osila-

gum, (2011) is widely used for the simplification of 

complex mathematical problems. The use of per-

turbation theory will allow approximate solutions to 

determine the problems that cannot be solved by 

traditional analytical methods. However, in many 

cases, real-life situations can require much more 

difficult mathematical models, such as non-linear 

differential equations. 
 

Perturbation theory is a powerful mathematical tech-

nique used to approximate solutions to problems that 

are difficult to solve exactly. It is particularly useful in 

physics, chemistry, engineering, and applied mathe-

matics, where many complex systems can be repre-

sented by differential equations that are challenging to 

solve analytically. Perturbation theory provides a 

systematic way to obtain approximate solutions by 

breaking down the problem into simpler, more 

solvable parts which was investigated by Debwan and 

Hasan, (2020). The basic idea behind perturbation 

theory is to start with a known, easily solvable 

problem (the unperturbed problem) and then introduce 

small corrections or perturbations to it. These perturb-

bations are typically represented by small parameters 

that quantify the deviation from the idealized, 

unperturbed system. By treating these perturbations as 

small deviations from the known solution, one can 

develop a series expansion in terms of these param-

eters, which can then be used to derive increasingly 

accurate approximations to the true solution. There are 
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two main types of perturbation theory: regular 

perturbation theory and singular perturbation theory. 

Regular perturbation theory developed by Dehghan 

and Shakeri, (2008) in which the perturbations are 

assumed to be small across the entire domain of 

interest. This allows for the development of a 

systematic series expansion, such as a power series, in 

terms of the small parameter. Each term in the series 

represents a higher-order correction to the solution, 

and the series can often be truncated at a certain order 

to obtain a sufficiently accurate approximation. The 

other is singular perturbation theory; singular perturb-

bation theory is used when the perturbations are not 

small throughout the entire domain, but rather become 

significant in certain regions or under certain condi-

tions. In such cases, a straightforward series expansion 

may not converge, and alternative techniques, such as 

matched asymptotic expansions or boundary layer 

analysis, are employed to obtain accurate solutions 

near the points of interest. Once the equation is non-

dimensionalized, perturbation theory requires taking 

advantage of a “small” parameter that appears in an 

equation was explained by (Shakeri and Dehghon 

2008; Elrazeg et al., 2022). This parameter, usually 

denoted “ε” is on the order of 0 < ε << 1.  
 

Perturbation theory has its roots in early celestial 

mechanics, where the theory of epicycles was used to 

make small corrections to the predicted paths of 

planets. Perturbation methods are powerful techniques 

used in mathematics and physics to approximate the 

results to differential equations, especially when exact 

solutions are difficult or impossible to find. These 

methods are particularly useful for problems where a 

small parameter exists, allowing for an expansion 

around a known solution. Perturbation theory relies on 

the existence of a small parameter, often denoted as 𝜖, 

which quantifies the deviation from a simpler problem. 

This parameter could represent a physical quantity like 

mass ratio, coupling constant or geometric scale. The 

central idea of perturbation theory is to approximate 

the solution to a complex problem by iteratively 

correcting a known solution to a simpler problem. This 

known solution is usually obtained by setting the small 

parameter to zero. Perturbation theory often involves 

analyzing the behavior of the solution as the small 

parameter approaches zero. Asymptotic behavior 

provides insights into the dominant terms contributing 

to the solution. The accuracy and validity of the appro-

ximate solution are validated by comparing it with 

exact solutions (if available), numerical simulations, or 

experimental data. Perturbation theory finds appli-

cations in diverse fields such as celestial mechanics, 

quantum mechanics, fluid dynamics, population 

dynamics, and many more. Advanced techniques such 

as multiple scales method, matched asymptotic 

expansions, and resummation methods are employed 

to improve the approximation problems (Nino et al., 

2013; Gervais et al., 1975). Perturbation theory 

provides a systematic framework for tackling complex 

problems and gaining insights into the behavior of 

physical systems. Its versatility and applicability make 

it an indispensable tool in scientific and engineering 

research. The beginnings of perturbation theory can be 

traced to Isaac Newton's work on the gravitational 

interactions between celestial bodies in the 17th 

century. While Newton provided exact solutions for 

two-body problems, the interactions of more than two 

bodies posed significant challenges. In the late 18th 

and early 19th centuries, mathematicians such as 

Joseph-Louis Lagrange and Pierre-Simon Laplace 

made significant contributions to celestial mechanics. 

They developed perturbation methods by He, (2003) to 

study the effects of gravitational interactions among 

multiple celestial bodies. Aghakhani, (2015) intro-

duced the concept of secular perturbations, which 

long-term effects are arising from gravitational 

interactions that cause slow changes in the orbits of 

celestial bodies over time. The development of series 

solutions for differential equations by mathematicians 

like Leonhard Euler and Joseph Fourier provided a 

mathematical foundation for perturbation methods. 

Laplace and Macgillivry, (2008) developed the met-

hods for finding asymptotic expansions of integrals, 

which laid the groundwork for the asymptotic analysis 

used in perturbation theory. William Rowan 

Hamilton's reformulation of classical mechanics in 

terms of Hamiltonian mechanics provided a new 

framework for perturbation theory. Wilsen and 

Rallison, (2007) made significant contributions to 

perturbation theory in celestial mechanics, introducing 

the concept of canonical transformations and deve-

loping perturbation methods to study the stability of 

the solar system. Quantum Mechanics: Perturbation 
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theory found widespread application in quantum 

mechanics, particularly in the development of quan-

tum electrodynamics (QED) by physicists such as Paul 

Dirac, Richard Feynman, Julian Schwinger, and Sin-

Itiro Tomonaga. Feynman diagrams revolutionized 

perturbation theory in quantum field theory, providing 

a graphical representation of particle inter-actions and 

facilitating calculations of scattering amplitudes.  
 

Perturbation methods have been extended by Xia and 

Zhang, (2024) to study nonlinear dynamical systems, 

chaos theory, and bifurcation theory. Perturbation 

techniques are widely used in engineering disciplines 

such as fluid dynamics, structural mechanics, and 

control theory to analyze the effects of small distur-

bances on system behavior. Throughout its history, 

perturbation theory has evolved from its origins in 

celestial mechanics to become a fundamental tool in 

various branches of science and engineering. Its 

development has been driven by the need to under-

stand and quantify the effects of small perturbations on 

complex systems, leading to advancements in both 

theory and application. Overall, the development of 

basic perturbation theory by Clenshaw and Norton, 

(1963) involves a systematic process of approximating 

solutions to differential equations by expanding them 

in powers of a small parameter and iteratively refining 

the solution to higher orders of accuracy. These 

methods provide valuable insights into complex 

systems and phenomena that cannot be fully under-

stood using exact analytical techniques. 
 

METHODOLGY: 

The methodology of perturbation methods involves a 

systematic approach to approximate results to differ-

ential equations by treating small deviations or 

perturbations from a known, easily solvable problem. 

Here's a general outline of the methodology. There are 

three steps and eight procedures of perturbation 

analysis. The three steps are given below; 
 

1) To transform the main problem into a perturb-

bation problem by taking a small parameter𝛿. 

2) To consider an expression for the solution in the 

form of a perturbation series and determine the 

coefficient of that series. 

3)  To regain the solution to the main problem by 

adding the perturbation series for the appropriate 

value of 𝛿. 
 

Step (1): There is sometimes ambiguity because there 

are many ways to introduce an𝛿 . However, it is 

preferable to introduce  𝛿  in such a way that the 

zeroth-order solution i.e. the leading term in the 

perturbation series is obtainable as a closed-form 

analytic expression.  

Step (2):  By setting𝛿 =0 in the perturbation problem, 

a first-order solution consists of finding the first two 

terms in the perturbation series, and so on.  

Step (3): Begin by identifying the differential equation 

that describes the problem of interest. This equation 

typically represents the behavior of a system under 

consideration, such as a physical system governed by 

the laws of physics or an engineering system described 

by mathematical models. 

Now the eight procedures are as follows; 
 

Introduce Perturbation Parameters 

Identify small parameters that quantify the deviations 

or perturbations from the idealized, unperturbed 

system. These parameters may represent small vari-

ations in system parameters, initial conditions, boun-

dary conditions, or external influences. 
 

Decompose the Solution 

Decompose the solution into two parts: the outcome of 

the unperturbed problem and the perturbation cor-

rection terms. The unperturbed solution represents the 

solution to a simplified version of the problem that is 

easily solvable, while the perturbation correction terms 

account for the effects of small deviations from this 

idealized solution. 
 

Expand the Solution in a Series 

Express the solution as a series expansion in terms of 

the small perturbation parameters. This series expan-

sion typically takes the form of a power series, where 

each term represents a higher-order correction to the 

solution. The coefficients of the series are functions of 

the perturbation parameters and are determined 

iteratively. 
 

Derive Equations for the Coefficients 

Substitute the series expansion into the original 

differential equation and equate coefficients of like 

http://www.universepg.com/
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powers of the perturbation parameters on both sides of 

the equation. This yields a set of equations for the 

coefficients of the series expansion, which can be 

solved order by order to obtain increasingly accurate 

approximations to the solution. 
 

Iterative Solution Procedure 

Solve the equations for the coefficients iteratively, 

starting from the zeroth-order term corresponding to 

the unperturbed solution and proceeding to higher-

order terms. Each successive iteration yields a more 

accurate approximation to the true solution by 

incorporating additional corrections from higher-order 

perturbation terms. 
 

Truncate the Series Expansion 

Truncate the series expansion at a certain order based 

on the desired level of accuracy or practical 

considerations. In many cases, only a few terms of the 

series are needed to obtain sufficiently accurate 

approximations, especially if the perturbation para-

meters are small. 
 

Analyze Convergence and Validity 

Analyze the convergence properties of the series 

expansion and assess the validity of the perturbation 

approach. Ensure that the perturbation parameters are 

indeed small and that the series converges to the true 

solution within the desired range of validity. 

Interpretation and Application 

Interpret the results into the domain and apply the 

approximate solution to analyze the behavior of the 

system, make predictions, or design engineering 

solutions. Understand the obstacles of the perturbation 

approach and validate the results through comparisons 

with numerical simulations or experimental data when 

possible. By following these steps and procedures, 

perturbation methods provide a systematic and 

powerful framework for approximating solutions to 

differential equations in a wide range of scientific and 

engineering applications, allowing researchers and 

engineers to tackle complex problems that are 

otherwise difficult to solve analytically. 
 

Non-singular Perturbation Theory with First-order 

First-order non-singular perturbation theory introduced 

by Nayfeh, (1981) is a technique used to approximate 

solutions to differential equations where perturbations 

become significant at certain points or under specific 

conditions, but are not small throughout the entire 

domain. This method was employed by Kumar and 

Parul, (2011) for the straightforward application of 

regular perturbation theory, which assumes small 

perturbations across the entire domain, is inadequate. 

Now, we have to solve the following differential 

equation, 
 

              ( ) ( )Dg x g x ,                     (1) 

Where, D implies differential operator, and  is an eigenvalue. Now it can be written as, 

(0) (1)
D D D  ,         (2) 

Where,  is very small, and operator (0)
D are known. That is, one has a set of solutions  

(0) ( ),nf x  labeled by 

index n, such that 
(0) (0) (0) (0)( ) ( )n n nD f x f x .        (3) 

Furthermore, one assumes an orthonormal set, 

          (0) (0)( ) ( )m n mnf x f x dx  ,                    (4) 

Where, mn implies the  Kronecker delta. Now, for the unperturbed solutions
(0) ( )nf x . That is, 𝑔(𝑥) = 𝑓𝑛(0)(𝑥) + Ҩ(𝜀).                      (5) 

And      =  𝑛(0) + +Ҩ(𝜀),                      (6) 

Where, Ҩ  denotes by big-O pattern, of the perturbation. We consider the linear combination
(0) ( )nf x :

(0)( ) ( )m m

m

g x c f x ,                                              (7) 

for mc = Ҩ(𝜀)except for n, where  nc = Ҩ(1) by orthogonality condition, 
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(0) (0) (1) (0)( ) ( )n n m n m n

m

c c f x D f x dx c    ,                                    (8) 

Where 

nm m n

m

A c c ,                              (9) 

where the matrix elements nmA are given by 
 

 (0) (0) (1) (0)( ) ( )nm nm n n mA f x D f x dx    .                          (10) 

The trivial solution, 

 
(0) (0) (1) (0)( ) ( )n n nf x D f x dx     .                          (11) 

By order Ҩ(𝜀2), we get 
(0) (1)( ) ( ) ( )n ng x f x f x  .                           (12) 

So that 
(0) (1) (0) (1) (0) (1) (0) (1)( )( ( ) ( )) ( )( ( ) ( ))n n n n n nD D f x f x f x f x         ,        (13) 

gives an equation for
(1) ( )nf x , 

(0) (0)( ) ( ) ( )n n

n

x y f x f y   .                                       (14) 

To give  
(0)

(1) (0) (1) (0)

(0) (0)
( )

( )
( ) ( ) ( )m

n m n

m n n m

f x
f x f y D f y dy

 



  .                                 (15) 

 

(Salem and Thanoon, 2021; Liu and Chang, 2022) 

interpreted these results in the domain which can be 

applied the approximate solution to analyze the 

behavior of the system, make predictions, or design 

engineering solutions. Understand the limitations of 

the first-order non-singular perturbation approach and 

validate the results through comparisons with 

numerical simulations or experimental data when 

possible. By following these steps, first-order non-

singular perturbation theory provides a systematic 

approach to approximate solutions to differential 

equations in situations where perturbations become 

significant in specific regions or under certain condi-

tions. This method allows researchers and engineers to 

tackle complex problems that cannot be explained 

using regular perturbation theory alone. 
 

Approximate Solution of an Initial-value Problem 

The initial value problem was chosen by 

Fowkes, (1968) and the boundary value problem 

was chosen by Baltaveva and Agarwal, (2018), which 

gives the following, 

 

y"=f(x)y,   y(0) = 1,  y' (0) =1,                                           (16) 
 

Where, f(x) is continuous, this problem has no closed-form solution except for very special choices 

for f(x). 
 

First, we introduced an  𝜀 as, 

y"= 𝜀 f(x)y,  y(0) =1, y'(0) =1.                                           (17) 

Secondly, we take y(x) as,  𝑦(𝑥) = ∑ 𝜀𝑛𝑦𝑛(𝑥)∞𝑛=0 .                                             (18) 

Where, '(0) (0) 1o oy y   and '(0) (0) 0n ny y      (n  1) 
 

The zeroth-order problem y"=0 is obtained by setting ε=0. The nth-order problem (n 1) is obtained 

by Eq. (18) into Eq. (17) and setting the coefficient of 𝜀n (n 1) equal to zero. The result is  
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1" ( ) , (0) 0, '(0) 0n n n ny f x y y y   .                              (19) 
 

The solution to (19) is 𝑦𝑛 = ∫ 𝑑𝑡 ∫ 𝑓(𝑠)𝑦𝑛−1(𝑠)𝑑𝑠,   𝑛 ≥ 1𝑡0𝑥0 .                                (20) 

Now, the successive terms in the parturition series (3): 

2

0 0 0 0
( ) 1 ( ) ( ) ( )

x t x t

y x x dt x s f s ds dt f s ds         0 0
(1 ) ( )

s v

dt u f v dv   …                    (21) 

The nth term in this series is by 2 (1 | |) / (2 )N N N
x K x N   with upper bound K for |f(t)| in the internal 0 £|𝑡|£𝑥|.  

 

Neumann Boundary Conditions 

Neumann boundary conditions developed by Kadum 

and Abdul-Hassan, (2023) are commonly encountered 

in partial differential equations (PDEs). They specify 

the function at the boundary of a domain rather than 

specifying the function itself. Neumann boundary 

condition concept arise in various physical and mathe-

matical contexts, particularly in problems involving 

diffusive processes, heat transfer, fluid dynamics, and 

electromagnetism was given by Saltzman, (1962). 
 

Consider the differential equation, 

 𝑦′′ + 𝑦 = 0.                           (22) 

On the interval [𝑎, 𝑏] take the form: 

 𝑦′(𝑎) = 𝛼 and 𝑦′(𝑏) = 𝛽.                        (23) 

Where, 𝛼 and 𝛽 are given numbers. Now, we have ∇2𝑦 + 𝑦 = 0.                          (24) 

Where, ∇2 denotes the given conditions on a domain  Ω ⊂ ℝ𝑛 take the form: 𝜕𝑦𝜕𝑛 (𝑥) = 𝑓(𝑥)    ∀𝑥 ∈ 𝜕Ω.                                      (25) 

The normal derivative which shows up on the left-hand side is defined as: 𝜕𝑦𝜕𝑛 (𝑥) = ∇𝑦(𝑥). 𝑛(𝑥).                                       (26) 

Where, ∇ is the gradient (vector) and the dot is the inner product. 
 

The Perturbation Process employ to the 

outcome of an Algebraic Equation 

The Perturbation Method Expanded with pro-

posed equation 

Consider the following equation. First, the equ-

ation is introduced as seen below. 𝑥2  +  𝜀 𝑥 –  1 =  0, 0 < 𝜀𝜀 << 1. 
 

The Perturbation Technique for Solving Alge-

braic Equation 

Leading Order Solutions 

The approximation process to 𝑥2 + 𝜀 𝑥 − 1 =0 is to set 𝜀 = 0.  

This reduces to:  

 𝑥2 = 1.                                     (27) 

Or, 𝑥 = ±1.                                    (28) 
 

First-order solution  

The approximation with second order, 𝑥 = ±1 +  (𝑥),                                  (29) 
 

Where, (𝑥) is some connection factor.   

Inserting x=1 into x2
+𝜀 x-1=0 yields; 
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(1 + 𝛿(𝑥))(1 + 𝛿(𝑥)) + 𝜀(1 + 𝛿(𝑥)) − 1 = 0.                       (30) 

Expanding (30)  𝛿(𝑥)2 + 2𝛿(𝑥) + 1 + 𝜀 + 𝜀𝛿(𝑥) − 1 = 0.                                 (31) 

Solving the remainder for (31) yields,  

( )
2

x 
  .                            (32) 

Substitution of (x) back into Eq. (29) for the positive roots yields:   

1
2

x
    

 
.                            (33) 

 

Second-order solution  

The approximation with third result is, 

                                                                                                                                                                                                 (34)             

 

 
 

Putting (34) into 
2 1 0xx     yields: 

1 ( ) 1 ( ) 1 ( ) 1 0
2 2 2

x x x
                    

    
.                    (35) 

Expanding (35)  
2

1 ( ) ( ) ( ) ( )
2 2 4 2 2

x x x x                

2( ) ( ) 1 0
2

x x
       .                        (36) 

The equation (36) is employ for (x),  
2

( )
8

x 
 .                                     (37) 

Substitution of (x) back into (34) for yields the third positive root approximation: 
2

1
2 8

x
      

 
.                          (38) 

 
 
 

Fig. 1: Graphical comparison between exact and perturbation solution. 
 

Analytic Result 

Here, gusting the solution by Shampine, (1968),  
Rx

ey                                        (39) 

and Substituting equation y=e
Rx into the following equation 

 

2

2
2 2 0

d y dy
y

dx dx
    . 

0.5 1 1.5 2

X

0.2

0.4

0.6

0.8

1

Y

exact
perturbation 1st order

perturbation 2nd order
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Now,  𝜀 R
2
 + 2R + 2 = 0.                                   (40) 

For roots R1 and R2, 

1

2 4 8

2
R




  
  .                         (41) 

and 
2

2 4 8

2
R




  
 .                                 (42) 

Now, 
xR

2

xR

1

21 eCeCy   .                                 (43) 

Substitution of equations (41) and (42) into equation (43) yields the following: 

2 4 8 2 4 8

2 2
1 2

x x

y C e C e

 
 

     

  .                       (44) 

Enforcement of the initial condition seen in equation 𝑦(0) = 0 to Eq. (44) yields:  

C1=C2.                           (45) 

Substituting Eq. (45) into (44) Eq. (44) yields, 

2 4 8 2 4 8

2 2
2 2C e C e

 
 

     

  =1                        (46) 

Solving Eq. (46) for C2 and then using Eq. (45) to solve for C1 yields: 

2 2 4 8 2 4 8

2 2

1
C

e e

 
 

     


 

                       (47) 

and 1 2 4 8 2 4 8

2 2

1
C

e e

 
 

     


 

                                                                               (48) 

Substitution of equations (47) and (48) into equation (44) which gives, 
 

2 4 8

2

2 4 8 2 4 8

2 2

1 x

analyticaly e

e e




 
 

  

     

 
  
 
  

+  

2 4 8

2

2 4 8 2 4 8

2 2

1 x

e

e e




 
 

  

     

 
     (49) 

 

Comparison of Perturbation Approximation to the Analytical Solution 

Let, 𝜀 = 0.01, valves determined from equations (41), (42), (47) and (48) the given table, 
 

Table 1: Analytical results obtained for the ordinary differential equation. 
 

Small parameter Analytical Roots Analytical Constants 𝜀 Root- 1 Root-2 C1 C2 

0.01 -1.00505 -198.99494 2.73204 -2.733205 
 

Data from the Table 1,  

% Error =  
100*

valueActual

valveActualvalveonPerturbati







   

2

1

x

x

compositey ee ee


    and 
2 4 8

2

2 4 8 2 4 8

2 2

1
compositey e

e e




 
 

  

     

 
   
 
  

     

    

2 4 8

2

2 4 8 2 4 8

2 2

1 x

e

e e




 
 

  

     

 
.  

Table 2: Exact results and Perturbation to the ordinary differential equation. 
 

X Y Analytical Y Composite % Error 

0 0 0 - 
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0.011519 2.424557348 2.415660385 -0.36695 

0.023038 641622008 2.629258016 -0.46805 
0.034907 2.635230466 2.622507364 -0.48281 
0.069813 2.546917667 2.534980398 -0.46869 
0.10472 2.4591161 2.448021737 0.45115 

0.139626 2.374339022 2.364043877 -0.4336 
0.174533 2.292484598 2.282946823 -0.41605 
0.20944 2.213452074 2.204631754 -0.39849 

0.244346 2.137144166 2.129003234 -0.38093 
0.279253 2.063466944 2.055969103 -0.36336 
0.314159 1.992329715 1.985440363 -0.34579 
0.349066 1.923644915 1.917331067 -0.32822 
0.383972 1.857327997 1.851558218 -0.31065 
0.418879 1.79329733 1.788041666 -0.29307 
0.453786 1.731474094 1.726704009 -0.27549 
0.488692 1.671782192 1.667470503 -0.25791 
0.523599 1.614148144 1.610268966 -0.24032 
0.558505 1.558501008 1.555029691 -0.22273 
0.593412 1.504772286 1.501685365 -0.20514 
0.628319 1.452895841 1.450170984 -0.18755 
0.663225 1.402807816 1.400423771 -0.16995 
0.698132 1.354446556 1.352383105 -0.15235 
0.733038 1.307752533 1.305990444 -0.13474 
0.767945 1.262668268 1.261189255 -0.11713 
0.802851 1.219138265 1.217924943 -0.09952 
0.837758 1.177108943 1.176144786 -0.08191 
0.872665 1.136528565 1.135797871 -0.06429 
0.907571 1.09734718 1.096835032 -0.04667 
0.942478 1.059516559 1.059208789 -0.02905 
0.977384 1.022990133 1.022873291 -0.01142 
1.012291 0.987722942 0.987784259 0.006208 
1.047198 0.953671574 0.953898935 0.023841 
1.082104 0.920794114 0.921176026 0.041476 
1.117011 0.889050091 0.889575656 0.059115 
1.151917 0.858400431 0.859059317 0.076757 
1.186824 0.828807407 0.829589821 0.094402 

 

We notice that the total outcome is rapidly 

reduced as x increases.  

For the linear ordinary differential equation 

can be noticed in Fig. 2. 
 

 
 

Fig. 2: Comparative solutions draw for the proposed equation. 
 

For the linear ordinary differential equation can be noticed with approximations percent error in 

Fig. 3. 
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Fig. 3: The percent error of regular perturbation graph for the proposed equation. 
 

Approximate Solutions of an IVP using the 

Perturbation Method 

The most important and excellent example of 

perturbation in this paper is example 1. It can be 

taken as a notable example of the perturbation 

solution of given equation. It shows how much good 

the perturbation solution is! 
 

Example 1 

 If 𝜀 ≪ 1, obtain the perturbed equation from 𝑦′′ − 𝜀𝑥𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 1 

Solution: Given, 
 𝑦′′ − 𝜀𝑥𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 1.                    (50) 

Let     𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥) + 𝜀2𝑦2(𝑥).                                                             (51) 

Therefore,𝑦′′(𝑥) = 𝑦0′′(𝑥) + 𝜀𝑦1′′(𝑥) + 𝜀2𝑦2′′(𝑥).                                                       (52) 

Since, 𝑦(0) = 𝑦0(0) + 𝜀𝑦1(0) + 𝜀2𝑦2(0) + ⋯ … … … … … … … … … … … … .. ∴ 1 = 𝑦0(0) + 𝜀𝑦1(0) + 𝜀2𝑦2(0) + ⋯ … … … … … … … … … … … … ..  𝑦0(0) = 1 𝑎𝑛𝑑 𝑦𝑛(0) = 0, 𝑛 ≥ 1  
Also, 𝑦′(0) = 𝑦0′ (0) + 𝜀𝑦1′ (0) + 𝜀2𝑦2′ (0) + ⋯ … … … … … … … .. ∴ 1 = 𝑦0′ (0) + 𝜀𝑦1′ (0) + 𝜀2𝑦2′ (0) + ⋯ … … … … … … … ..   𝑦0′ (0) = 1 𝑎𝑛𝑑 𝑦𝑛′ (0) = 0, 𝑛 ≥ 1  
 

Putting (51) and (52) in (50) we get 𝑦0′′ + 𝜀𝑦1′′ + 𝜀2𝑦2′′+. . … … = 𝜀𝑥[𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 + ⋯ ].                                                                          (53) 

Eq. (53) is an identity. It is true only when the coefficients of the like powers of 𝜀  from both sides are equal. 𝑦0′′ = 0, 𝑦0(0) = 1, 𝑦0′ (0) = 1 𝑦1′′ = 𝑥𝑦0 ,   𝑦1(0) = 0, 𝑦1′ (0) = 0 𝑦2′′ = 𝑥𝑦1 ,   𝑦2(0) = 0, 𝑦2′ (0) = 0 

Proceeding in this way, we have 𝑦𝑛′′ = 𝑥𝑦𝑛−1 ,   𝑦𝑛(0) = 0, 𝑦𝑛′(0) = 0. 

Now, 𝑦0′′ = 0 𝑦0′ = 𝑐1 ∴ 𝑦0 = 𝑐1𝑥 + 𝑐2 𝑦0(0) = 𝑐1. 0 + 𝑐2 ∴ 𝑐2 = 1 𝑦0′ = 𝑐1  𝑦0′ (0) = 𝑐1 ∴ 𝑐1 = 1 ∴ 𝑦0 = 𝑥 + 1 

Again, 𝑦1′′ = 𝑥 

 ∴ 𝑦1 = 𝑥412 + 𝑥36 + 𝑐1𝑥 + 𝑐2 

0.2 0.4 0.6 0.8 1 1.2
X

-0.4
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%Error
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𝑦1(0) = 𝑐2 ∴ 𝑐2 = 0 

And  𝑦1′ (0) = 𝑐1 ∴ 𝑐1 = 0 ∴ 𝑦1 = 𝑥412 + 𝑥36  

Again, 𝑦2′′ = 𝑥𝑦1 𝑦2′′ = 𝑥512 + 𝑥46   ∴ 𝑦2′ = 𝑥672 + 𝑥530 +𝑐1 ∴ 𝑦2 = 𝑥7504 + 𝑥6180 +𝑐1𝑥 + 𝑐2 𝑦2(0) = 𝑐2 ∴ 𝑐2 = 0 

And, 𝑦2′ (0) = 𝑐1 ∴ 𝑐1 = 0 ∴ 𝑦2 = 𝑥7504 + 𝑥6180  ∴ The required perturbation solution is  𝑦(𝑥) = 1 + 𝑥 + 𝜀 (𝑥36 + 𝑥412) + 𝜀2 ( 𝑥6180 + 𝑥7504) + ⋯  

 

Example 2 𝑦′′ = −𝑒−𝑥𝑦 ,                𝑦(0) = 𝑦′(0) = 1 

We want to find out its solution by different methods and show a comparison among those solutions. 

Solution: 

(i) The perfect solution given,  

 𝑦′′ = −𝑒−𝑥𝑦 ,                𝑦(0) = 𝑦′(0) = 1.                                    (54) 

Using the substitution, 𝑧 = 2𝑒−𝑥2  .                                                                                   (55) 

In the equation, we take the equation of the form, 𝑧 𝑑2𝑦𝑑𝑧2 + 𝑑𝑦𝑑𝑧 + 𝑧𝑦 = 0 .                      (56)   

Two linearly independent solutions of Eq. (56) are 𝐽0(𝑧), and 𝑌0(𝑧) . Therefore, the optimum output is given 

by, 𝑦(𝑥)=𝑐1𝐽0(𝑧)+𝑐2𝑌0(𝑧),        Where, 𝑧 = 2𝑒−𝑥2  .                   (57) 

This gives, 𝑦′(𝑥) = {𝑐1𝐽′(𝑧)} (−𝑒−𝑥2) .                      (58) 
 

For c1 and c2, in (57) and (58) finally we get, 𝑐1 = 𝑌′0(2)+𝑌0(2)𝐽0(2)𝑌′0(2)−𝐽′0(2)𝑌0(2).                                     (59) 𝑐2 = − 𝐽′0(2)+𝐽0(2)𝐽0(2)𝑌′0(2)−𝐽′0(2)𝑌0(2) .                      (60) 

 

Putting these values in Eq. (57), we obtain the exact solution 𝑦(𝑥) = {𝑌′0(2)+𝑌0(2)}𝐽0(2𝑒−𝑥2)−{𝐽′0(2)+𝐽0(2)}𝑌0(2𝑒−𝑥2)𝐽0(2)𝑌′0(2)−𝐽′0(2)𝑌0(2)  .                               (61) 

(ii) The perturbation Solution: 
 

We change the problem into a perturbation problem by introducing the parameter ε in such a way that the 

unperturbed problem is solvable, 
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 𝑌" = −ε𝑒−𝑥𝑦   ,                𝑦(0) = 𝑦′(0) = 1 .                                  (62) 
 

We take a perturbation expansion for y(x) of the form, 
 

0

( ) ( )n
n

n

y x y x



 .                                  (63) 

 

Hence 
 

     
0

''( ) '' ( )n
n

n

y x y x



 .                                (64) 

Now with the use of (63) and (64), (62) takes the form 
 ∑ 𝜀𝑛∞
𝑛=0 𝑦𝑛′′(𝑥) = −𝜀𝑒−𝑥 ∑ 𝜀𝑛∞

𝑛=0 𝑦𝑛(𝑥) 

i.e. 𝑦0′′ + 𝜀𝑦1′′ + 𝜀2𝑦2′′ + 𝜀3𝑦3′′ + ⋯ + 𝜀𝑛𝑦𝑛′′ … = −𝜀𝑒−𝑥𝑦0 − 𝜀2𝑒−𝑥𝑦1 − ⋯ − 𝜀𝑛𝑒−𝑥𝑦𝑛−1 − ⋯                   (65)                             
 

This gives a sequence, 𝑦0′′ = 0, 𝑦𝑜(0) = 1, 𝑦0′ (0) = 1.                        (66) 

 𝑦𝑛′′ = 𝑒−𝑥𝑦𝑛−1,     𝑦𝑛(0) = 0, 𝑦𝑛′ (0) = 0,     𝑛 ≥ 1.                                                                                  (67) 
 

 

Solving (67) we get, 𝑦0 = 1 + 𝑥.  

Now for  𝑛 = 1,       𝑦1′′ = 𝑒−𝑥𝑦0 ,       𝑦1(0) = 0,         𝑦1′ (0) = 0, whose solution is, 

 𝑦1 = ∫ 𝑑𝑡 ∫ (1 + 𝑠)(𝑡0𝑥0 −𝑒−𝑠)𝑑𝑠 = 3 − 2𝑥 − (3 + 𝑥)𝑒−𝑥. 

For  𝑛 = 2 , 𝑦2′′ = 𝑒−𝑥𝑦1 ,  𝑦2(0) = 0, 𝑦2′ (0) = 0, whose solution is, 𝑦2 =  ∫ 𝑑𝑡 ∫ (𝑡0𝑥0 −𝑒−𝑢)[𝑦1(𝑢)]𝑑𝑢 = −2 + 34 𝑥 + (1 + 2𝑥)𝑒−𝑥 + (1 + 𝑥4)𝑒−2𝑥. 
 

We find,  𝑦3 = 41108 − 19 𝑥 + (12 − 3𝑥4 ) 𝑒−𝑥 − (34 + 𝑥2) 𝑒−2𝑥 − ( 754 + 𝑥36)𝑒−3𝑥. 

and 

 𝑦(𝑥) = 𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 + 𝜀3𝑦3. 

When 𝜀 = 1, we get the approximate solution up to fourth-term as,  
 

  𝑦(𝑥) = 1 + 𝑥 + 3 − 2𝑥 − (3 + 𝑥)𝑒−𝑥 − 2 + 34 𝑥 + (1 + 2𝑥)𝑒−𝑥 + (1 + 𝑥4) 𝑒−2𝑥 + 41108 − 19 𝑥 + (12 − 3𝑥4 ) 𝑒−𝑥 −(34 + 𝑥2) 𝑒−2𝑥 − ( 754 + 𝑥36) 𝑒−3𝑥                                                                                                                                    (68) 
 
 

 
 

Fig. 4: A comparison of perturbation series approximations. 
 

Example 3 

An approximation solution of the formidable-looking non-linear two-point boundary value 

problem - 

1 2 3 4 5 6 7
X
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  2)0(:
3

" 22



 yy

y

Cosx
yy .               (69) 

 

May be readily obtained using perturbation 

theory. 

Since it is not possible to find the exact 

solution to this problem, it can also be solved 

numerically using nonlinear shooting with 

Newton’s Method. 
 

Perturbation solution 

First, we introduce 𝜀 in such that the under-

handed problem is solvable: 

 22
" : (0) 2

3

Cosx
y y y y

y


   


. 

Or,  (𝑥 + 𝑦2)(𝑦′′ + 𝑦) = 𝜀𝑐𝑜𝑠𝑥.   

           (A) 

Secondly, let us assume that a perturbation 

expansion for y(x) of the form 

  
0

( ) ( )n

n

n

y x y x




  

  
0

"( ) " ( )n

n

n

y x y x




  (3 + y.y) (y" + y) = 𝜀Cosx 

  
0 0 0 0

3 ( ). ( ) . " ( ) ( )n n n n

n n n n

n n n n

y x y x y x y x   
   

   

   
    

   
    =  𝜀cosx 

   2 4
0 0 0 1 0 3 0 43 . . ................y y y y y y y y       

 Again,
0 0

" ( ) ( )n n

n n

n n

y x y x Cosx  
 

 

 
  

 
   

   2 3 4
0 0 1 0 3 0 43 2 2 2 ...................y y y y y y y        

        2
0 0 1 1 2 2" ( " ) ( " ) ..........y y y y y y Cosx         . 

 

Equating the coefficient of various powers of 𝜀, we get. 

 𝑦0′′ + 𝑦0 = 0, 𝑦0(0) = 2, 𝑦0 (𝜋2) = 2.                 (70) 

 2 "
0 1 1(3 ) ( ) sy y y Co x    

         𝑦1′′ + 𝑦1 = 𝑐𝑜𝑠𝑥3+𝑦02 , 𝑦1(0) = 0, 𝑦1 (𝜋2) = 0.             (71) 

 The A.E of (70) is, m
2
 + 1 = 0   m =  i 

  yc = c1Cosx + c2Sinx.                         (72) 

  y0 (0) = c1.1+c2.0 = 2  c1=2 

 and  20 1 2 2.1 .1 2 2y c c c       

 (72)  
0 2 2y Cosx Sinx  . 

 (71)  
 

"
1 1 2 23 4 2

Cosx
y y

Cos x Sin x SinxCosx
 

  
 

𝑦1′′ + 𝑦1 = 𝑐𝑜𝑠𝑥7+4𝑠𝑖𝑛2𝑥.                        (73) 

   1 2cy c Sinx c Cosx        

  

We assume that, 𝑦𝑝(𝑥) = 𝑣1(𝑥)𝑠𝑖𝑛𝑥 + 𝑣2(𝑥)𝑐𝑜𝑠𝑥.                       (74) 

   ' '
1 2 1 2( ) ( ) ( ) ( )py x v n Cosx v Sinx v x Sinx v x Cosx     

 We impose the condition, 

  𝑣1(𝑥)𝑠𝑖𝑛𝑥 + 𝑣2(𝑥)𝑐𝑜𝑠𝑥 = 0.                       (75) 

    '
1 2( ) ( ) ( )y x v x Cosx v x Sinx    𝑦𝑝′′(𝑥) = −𝑣1(𝑥)𝑠𝑖𝑛𝑥 − 𝑣2(𝑥)𝑐𝑜𝑠𝑥 + 𝑣1(𝑥)𝑐𝑜𝑠𝑥 − 𝑣2(𝑥)𝑠𝑖𝑛𝑥.                   (76) 
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 Putting these values from (76) and (74) in (7)   

 ' '
1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )

7 4 2

Cosx
v x Sinx v x Cosx v x Cosx v x Sinx v x Sinx v x Sinx

Sin x
      


 

   𝑣1(𝑥)𝑐𝑜𝑠𝑥 − 𝑣2(𝑥)𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠𝑥7+4𝑠𝑖𝑛2𝑥.                     (77) 

 Now, (75) and (77)    

  ' '
1 2 ( ) 0v Sinx v x Cosx   and ' '

1 2
7 4 2

Cosx
v Sinx v Sinx

Sin x
 


. 

  '
1

1
(1 )

2( )
7 4 2

Cosx

v x
Sin x





 

   ' 1
1

1 4 7 tan 1
( ) tan ln 7 4 2

162 33 33

x
v x Sin x

  
   

 
 

  
2' ( )

7 4 2

SinxCosx
v x

Sin x





  







 
 

33

4tan7
tan

338

7

8
)( 1

2

xx
xv . 

 The solution of Eq. (73) can be given in the following form: 

  1
1 1 2

7 4 7 tan
( ) tan

8 8 33 33

xCosx Cosx x
y x c Cosx c Sinx

  
     

 
 

   1 4 7 tan
tan ln 7 4 2 ...................(C)

162 33 33

Sinx x Sinx
Sin x

  
   

 
 

For,   21 1(0) 0, 0y y    then, 1
1

7 4
tan `

8 33 33
c

  
   

 
  and 

2

1
ln(7)

168 33
c


   . 

 

 

A comparison of perturbation series approxi-

mation and Numerical solution of the boun-

dary value problem in (A) is presented in the 

following figure. The graphs are one-term 

perturbation series approximation and two-

term perturbation series approximation (das-

hed line) of the form in (C). 

 

 
 

Fig. 4: A comparison of perturbation series approximation and numerical solution of the boundary-value 

problem in error. 
 

CONCLUSION: 

The present paper deals with the perturbation 

method and implies how much effective it is to solve 

a nonlinear differential equation involving initial as 

well as boundary conditions. Numerical solutions 

have been used to fulfill the investigation. Compari-

sons between numerical and perturbation solutions 

have been performed using Mathematica and For-

tran Programming. Perturbation methods offer a 

valuable approach for approximating solutions to 

differential equations encountered in diverse scien-

tific and engineering contexts. By systematically 

treating small deviations from known solutions, 

perturbation methods provide insights into system 

behavior, facilitate analytical predictions, and aid in 

the design of engineering systems. Through theo-
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retical developments, numerical techniques, and 

practical applications, perturbation methods con-

tinue to play a vital role in advancing our under-

standing of complex dynamical systems. 
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